Direct Electrochemistry of Catalase at a Gold Electrode Modified with Single-Wall Carbon Nanotubes
نویسندگان
چکیده
The direct electrochemistry of catalase (Ct) was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox peaks was obtained for Ct with the reduction peak potential at 0.414 Vand a peak potential separation of 32 mVat pH 5.9. Both reflectance FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that Ct adsorbed onto the SWNT surfaces. The redox wave corresponds to the Fe(III)/Fe(II) redox center of the heme group of the Ct adsorbate. Compared to other types of carbonaceous electrode materials (e.g., graphite and carbon soot), the electron transfer rate of Ct redox reaction was greatly enhanced at the SWNT-modified electrode. The peak current was found to increase linearly with the Ct concentration in the range of 8 10 6 ± 8 10 5 M used for the electrode preparation and the peak potential was shown to be pH dependent. The catalytic activity of Ct adsorbates at the SWNTs appears to be retained, as the addition of H2O2 produced a characteristic catalytic redox wave. This work demonstrates that direct electrochemistry of redox-active biomacromolecules such as metalloenzymes can be improved through the use of carbon nanotubes.
منابع مشابه
Direct electrochemistry of xanthine oxidase at a gold electrode modified with single-wall carbon nanotubes.
The direct electrochemistry of xanthine oxidase (XOD) was accomplished at a gold electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox peaks was obtained for XOD with the reduction peak potential at -0.478 V and a peak potential separation of 28 mV at pH 7.0. Both FT-IR spectra and the dependence of the reduction peak current on the scan rate revealed that X...
متن کاملDirect Electrochemistry of Polyphenol Oxidase
The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH,...
متن کاملA Sensitive Simultaneous Determination of Uric Acid, Norepinephrine and Indomethacin using a Cadmium Sulfide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Gold Electrode
In this study a novel method was developed to fabricate cadmium sulfide nanoparticles/multiwalled carbon nanotubes composite modified gold electrode (CdSNPs/MWCNTS/AuE) to measure trace amounts of norepinephrine(NE), indomethacin (IND), and uric acid (UA) simultaneously. Electrochemical investigations were carried out using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chron...
متن کاملDirect electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes.
The electrochemistry of horse heart cytochrome c was studied by cyclic voltammetry at a glassy carbon electrode modified with single-wall carbon nanotubes (SWNTs). A pair of well-defined redox waves was obtained in cytochrome c aqueous solution at an activated SWNT film-modified electrode. The optimal conditions for activating the SWNT film-modified electrode has been determined. The electrode ...
متن کاملElectrochemical Sensor for Determination of Fenitrothion at Multi-wall Carbon Nanotubes Modified Glassy Carbon Electrode
A sensor, based on multi-wall carbon nanotubes modified glassy carbon electrode (MWCNT/GCE), was developed for determination of fenitrothion. Determining the surface area of MWCNT/GCE showed that this surface is three times more active than that of a glassy carbon electrode. The experimental parameters, such as the amount of MWCNTs, pH of the fenitrothion solution, preconcentration potential an...
متن کامل